Density matrix functional theory that includes pairing correlations
نویسندگان
چکیده
منابع مشابه
From Density Functional Theory to Density Matrix Functional Theory
Coupled cluster methods are considered among the most accurate tools in electronic structure theory. Nonetheless relatively limited attempt seems to have been made to extend their applicability to the description of the core-excitation phenomena that are behind largely used spectroscopic techniques like x-ray absorption spectroscopy and x-ray circular dichroism. As a first step to redeem for su...
متن کاملRelation between the density-matrix theory and the pairing theory
The time-dependent density-matrix theory (TDDM) gives a correlated ground state as a stationary solution of the time-dependent equations for one-body and two-body density matrices. The small amplitude limit of TDDM (STDDM) is a version of extended RPA theories which include the effects of ground state correlations. It is shown that the solutions of the Hartree-Fock Bogoliubov theory and the qua...
متن کاملLinear-response time-dependent density-functional theory with pairing fields.
Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)]...
متن کاملPairing Nambu-Goldstone Modes within Nuclear Density Functional Theory.
We show that the Nambu-Goldstone formalism of the broken gauge symmetry in the presence of the T=1 pairing condensate offers a quantitative description of the binding-energy differences of open-shell superfluid nuclei. We conclude that the pairing-rotational moments of inertia are excellent pairing indicators, which are free from ambiguities attributed to odd-mass systems. We offer a new, unifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review C
سال: 2006
ISSN: 0556-2813,1089-490X
DOI: 10.1103/physrevc.74.064310